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An exact solution of the plane problem of the non-linear theory of elasticity is constructed for a crack 

at the interface between two different media for an elastic potential corresponding to a linearly elastic 

prestressed material. A unified version (11 of the plane problem of the non-linear theory of elasticity is 

used. For comparison the solution of the corresponding problem for the linear theory with the same 

elastic potential is given. The asymptotic forms of the stresses in both cases are compared. It is shown 

that the asymptotic form of the components of the symmetric Biot tensor is of the same order as the 

asymptotic form of the stresses in the linear problem, but in this case the first has no oscillations while 

the squares of the coefficients of the principal terms of the asymptotic forms of these stresses are 

identical, apart from a factor, with the Rice-Cherepanov integral. The displacements in the non-linear 

problem do not oscillate only when a certain relation for the elasticity constants of the contacting media 

is satisfied. 

The solution of the plane problem of the linear theory of elasticity for an interphase crack [2-6] 
contains an oscillating singularity and therefore loses meaning on certain parts of the surface of 
the crack near its tips. The correction of this solution by introducing additional contact 
conditions on the crack surface [7-12] removes the oscillation but preserves the singularity of 
the stresses and strains. Hence, in both cases the linear theory of elasticity is untenable in a 
certain neighbourhood of the crack tip, and this requires that the corresponding problems 
must be solved in the non-linear formulation. 

1. FORMULATION OF THE PROBLEM 

Consider the simultaneous deformation of two different media under plane strain conditions 
for a plane stressed state. In the x:, X; plane boundary L between the two media in the 
undeformed state coincides with the real axis X; = 0, on which the crack is situated L,, = {x,“, 
X;::IX;I<l, Xz” =O]. We will assume that the crack surfaces are free from external forces, and 
the principal stresses ~7~ = Q; (j= 1, 2), act at infinity in each medium S, (k= 1, 2) and Q: 
makes an angle of xI, with the X: axis (Fig. 1). 

We will take the law of elasticity for the material of each medium in the form 

07 =a;c+ -(-l,“a;y t-0; (_i,k = 1.2) (1.1) 

5’ = K[(h, -l)+(h, -I>] 

tPrik1. Mat. Mekh. Vol. 58. No. 4, pp. 146-158, 1994. 

727 



M. A. Grekov 

Fig. 1. 

where cry are the principal values of the Biot tensor (the principal stresses), the hj -1 are the 
principal relative extensions, op, ai are the elasticity constants of the medium S,, the values 
of which, generally speaking, vary when the constant a; (the residual stress in the reference 
configuration of the corresponding medium) varies. Quantities with the superscript 0 relate to 
the undeformed (the reference) configuration while those without this superscript relate to the 
deformed (actual) configuration. 

For small deformations and angles of rotation, relations (1.1) reduce to Hooke’s law along 
the principal axes CT; = oj, 5’ = X(e, *e2)) and oi = 2(h”, + pz), al = 2&‘, where when o; = 0, 
AYk = hlkj, pi = p(,) are Lame constants, and for a plane stressed state Xl must be replaced by 
h; = 2h”,pi /(Al + 2&J). 

The linear relations (1.1) between the quantities 03 and hj - 1 which form an energy pair [l], 
correspond to linearly elastic prestressed materials for which when 3c, = h, = 1, i.e. when there 
is no strain, 0: = 0; = 0:. 

We will construct a solution of the non-linear problem in the special case when, for each medium S,, 
the value of the preliminary uniform stress (the residual stress) is identical with the corresponding 

modulus of elasticity of the material, i.e. 0; = 0: = o’, and ai = a,. The analysis of the singularities of the 
stress-strain state in the neighbourhood of the crack tip is then simplified since the solution of the 
problem can be obtained in analytic form. 

This does not mean that the solution of the problem of the non-linear theory of elasticity constructed 
below has a particularly special form. It can be seen from the solution of the non-linear problem obtained 
that the stress-strain state around the crack tip does not change qualitatively when the elastic constants 

change. As in the linear problem, the dependence of the asymptotic formulae of the solution of the non- 

linear problem on the elastic constants is a characteristic feature of an interface crack and is expressed in 

the relationship between the bi-elastic constant E and 0; and a, (k = 1, 2). F’or a crack in a uniform 
medium (where both media are the same) this relation naturally disappears. 

We must add to the above the fact that the linearity of relations (1.1) enables us to investigate in “pure 
form” the effect of a geometric non-linearity in plane problems of the theory of elasticity. 
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2. FUNDAMENTAL RELATIONS 

The elastic potential 

corresponds to relation (1.1) when a; = ai = a;, ai = a,. In this case the solution of the plane 
problems of the non-linear theory of elasticity reduces [l, 131 to finding the complex piecewise- 
holomorphic functions @([) and Y(c), which satisfy the linear boundary conditions either for 
the stresses (Fig. 2) 

a’GQeirO + awe+’ =e’ro[aoo(so)+i~oo(sJ~l (2.2) nn nt 

specified on the contour so of the region, or for a specified configuration of the deformed 
contour so 

uq &‘YO - ul(r)e-‘u” = -idz I ds” (2.3) 

Here and henceforth we will use complex coordinates and components of the vectors and 
tensors, introduced by the relations [13] 

(2.4) 

T =h+h2+i(42-h1), T, =tll -tz2+iO12+r2,) 

The fundamental expressions defining the stress-strain state of the body in the plane 
problem of the non-linear theory of elasticity have the form [13] 

(2.5) 

Fig. 2. 
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Here o is the angle of rotation of a material particle, A is the multiplicity of the change in the 
area in the X: = 0 plane, h is the multiplicity of the extension along the ~3” axis, and Cy and C, 
are the complex components of the tensors of the nominal and actual stresses, respectively. 

It should be noted that, since the elastic constants ok and a, of the contacting media are 
different, we need to obtain four functions of the complex variable Q,(c), Yk([) (k=l, 2) in 
order to solve the problem completely. For each medium S, there is a pair ak, Y,, which 
defines, by (2.9, the stress-strain state of this medium. The functions Qk, Yk need only be 
holomorphic, generally speaking, in the corresponding regions S,. 

In addition to the above relations we also write the boundary conditions 

dz,lcix~=dz&ix~, GE& (2.7) 

oo,” =oa; =O, reLlr k=1,2 (2.8) 

Here (2.6) is the condition of continuity of the stresses along L, (2.7) is the condition of 
continuity of the displacements in differential form along the part of the contact L,(xp = so), 
and (2.8) is the condition on the crack surface. 

3. SOLUTION OF THE INITIAL PROBLEM 

We will continue the function al(c) analytically in S,, and the function 
S, as follows: 

$(Q analytically in 

@,(~)=(ak/o;)~, <E&, k=l,2 (3.1) 

By (2.2) the functions @,#Z,) are continued continuously through the unloaded parts of the 
line L. Changing in (3.1) to conjugate quantities and substituting the result into (2.6) using 
(2.2) we obtain when y” = -n/2 

[~;~,0)+0;@‘2(~)1+ =kJp,.(t)+o;qr)l-, CEL (3.2) 

It follows from (3.2) that the holomorphic function in the square brackets is constant over 
the whole plane, i.e. 

Then, the boundary conditions (2.7) and (2.8) reduce to the form 

P= 
l/o;+l/a, 

Q= 
l/a; +1/a, 

1/$+1/a, ’ a;<l/o; +1/a,) 
<o;u: +o;u;, 

respectively. 
We will introduce the new function F(c), holomorphic on the line of contact and which 

vanishes at infinity 
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F(C)= WO-~L 
t 

w, (3.6) 
-VPqW4b w, 

From (3.4) and (3.5) we then obtain for the function F(c) a homogeneous Hilbert boundary- 
value problem, the general solution of which can be written in the form [14] 

F(C)= 4-u; iX(r)&+C 
27cipX(c) -I t-6 X(0 

( 1 

ie 

C = cons& X(C)=6 5 * &!!E 
211 

(3.7) 

ie 

X(t)=X+(t)=-BX-(t)=ie-RJ;--;r 5 , 
( 1 

M< I 

Changing in (3.7) to integration over the closed contour, contractable to the section [-1, 11, 
and taking into account the expansion of the function X(c) at infinity, we obtain 

(3.8) 

We obtain the constant in (3.8) from the condition for the principal vector of all forces acting 
on an element of the lower half-plane I xf I < A, -Bc$<O (B>O) to be zero. As A+-, 
B -+ 00 this condition leads to the equation 

I$ + iF2 = ‘~(o~~- + iotim)e’wydt (3.9) -00 

where (F,, F,) is the principal vector of the forces applied to L from the side of the positive 
direction of the xi axis. 

Taking (3.1) and (3.6) into account, we have [l, 131 

F; +iF, =i j[o;Q;(t)-cr,Y;-(t)]dt=ia;T[2e”ch(m)F-(t)+u; -a,+ldf 
-ca 

(3.10) 

Substituting (3.10) and (3.7) into (3.9) we obtain C = 0. In addition, we obtain from (2.5) 

We finally obtain 

Q:+Q; io; _ a,-, k=l 

20;e - a2+, k=2 

k = 1 Q: -Q; ei(oy+2xk) _ a,+, 

20; -{ a;, k=2 

y=m(3-2k), <ES, 

(3.11) 

(3.12) 

B 
k 

= ch(xa)c$” +(-l)‘sh(xe)o$’ +ieYop2b - 

4 

emk 
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(c$?’ are the values of the nominal stresses c$ at infinity in the medium S,). 
Since an infinitely distant point is situated on the line of contact L,, the displacements and 

stresses at infinity must satisfy the contact conditions (2.6) and (2.7) or (3.2) and (3.4). In the 
limit in (3.2) and (3.4) as X: + 00 taking (3.11) into account, we obtain 

(3.13) 

respectively. 
Relations (3.13) and’(3.14) establish a connection between the stresses applied to the lower 

and upper half-planes at infinity. In particular, when 

02 “=f$=J = 0 (k=1,2) (3.15) 

it follows from (3.14) that 

w; =o;, (l/o~+l/a,)o~~“=<l/o~+l~a,)o~~” (3.16) 

The stressed state, defined by (3.15) and (3.16), is characteristic of the fact that the occur- 
rence of a crack between two media has no effect on it. In this degenerate case, the complex 
potentials or and Yk have constant values 

On the other hand, when of = o;, we have 

42b =0;;, 
ok-= e:-, 

612 1 a, =a2 

0, aI +a2 

(3.17) 

(3.18) 

Moreover, when a preliminary uniform tension c$~ = og- = o;, ofi” = 0 acts in S, far from 
the crack and also o,, CQ- =0, from (3.13) we obtain o; = w;, a~~~ = 0;. It then follows from 
(3.14) that 

011 
02-c.;. 

2(c$ - a; ) 
a;(l/a~+l/a,) 

(3.19) 

We see from (3.19) that only when a; = a; in both media, far from the crack, can one obtain 
a preliminary uniform tension o;, i.e. the initial undeformed state. 

When there is no crack, i.e. when there is continuous contact between the two different 
media, it obviously follows from (2.1), (3.7) and (3.8) that 

@, =a;, Y, =(o;/a,&+ (<ES,) 

@2 =a& Y2 = (a; /a2)ii; &ES21 

(3.20) 
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The stressed state in each medium is then constant and is identical with the stressed state at 
infinity. However, if there are no deformations when a uniform tension c$‘~ = 0; = 0; acts in S,, 
the medium S, will in this case undergo a non-zero deformation when ai z 0;. 

We obtain the position of the points of each medium, from the first relation in (2.5) and 
(3.12) 

Ak -- 
” - 2ch(x.e) 

,yr*-1 e-y4 4*-l 
X(C) 

--$FJj+&jk+$i]. hsk (3.21) 

We obtain the deformation of the crack surface from (3.21) with { = x,“, Ix,” I s 3 

zk(-$> = c;(l/o;+l/ak) 
2 ch(n&) 

B,X; + i(-1)’ A, dm (3.22) 

We see from (3.22) that even in the simplest case of tension at infinity c$~ = CT*, ~$2” = o; = 0 
Cj, k = 1, 2) when o; = o; = o’ the surfaces of the cracks penetrate into one another in the 
region of the tip. In fact, in this cases A, = 1, Bk = e”(2’-3) and 

= o*(l/o*+l/ak) xOe-y 

2ch(rr.c) 1 -(-l)‘JS [sin(rln+$)-icos(a.~)]} (3.23) 

As one approaches the right-hand tip (x,” + 1) the first points of the crack surfaces, corres- 
ponding to maximum “overlap”, have the coordinate x,” = th(g:~~Ie). In this case 

Xk = c*(l/a*+l/ak)emY 
1 

2ch(ae)cth(Y,x/&) 

*; = (-l)k+’ = 0*(1/o* +1/a,) 

2ch(lre)ch(Y,x/c) 

(3.24) 

Although the displacements of these points along & are not identical (xi #x,“), it can be 
shown that, in general, when a, #a, this does not prevent mutual penetration of the crack 
surfaces. On the other hand, when l/o;+lla, =l/a;+l/a, there are no oscillations of the 
displacements. 

Using (2.5) and (3.12) we can also determine the stressed state at any point of each medium. 
Thus, in the neighbourhood of the right-hand tip of the crack (x,” = 1) we have the asymptotic 
forms for the compressed materials of both media 

h =exp[nE(3-2k)+E(p0], k=1,2 

K= K, -iK, =2~~-“~~(r-l)K+~~k(T)= 

Here 
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Then 

=: __2f*l+;;Jak 

4 
2K(l+o; /a&)fkz rO-ize LX; 

o; iE’w 

(3.25) 

(3.26) 

The asymptotic relations obtained show that under conditions of plane deformation 
(h = const) of compressed materials the actual stresses in the neighbourhood of the tip of the 
crack are limited and have an oscillatory form defined by the factor T~-‘~‘. At the same time, the 
conventional stresses have the same singularity as the stresses in the linearly elastic problem, 
but, unlike the latter, they do not oscillate as Y’ + 0. On changing to a polar system of 
coordinates r”, (p” (Fig. 1) from (3.26) and the equalities 

we obtain for the nominal stresses 

Ok 

=A0 ---&f& -f,-'cos(po) 

(3.27) 

From the asymptotic representations of the quantities at, /a< and az, /SC we also obtain [13] 
the value of the Rice-Cherepanov integral 

4. SOLUTION OF THE LINEAR PROBLEM 

We will consider the solution of the plane problem of the linear theory of elasticity for a 
crack at the interface between two media which, for small strains and angles of rotation, 
correspond to Hooke’s law (1.1). We will assume that the value of the preliminary uniform 
tension in each medium is equal to o; and is an independent parameter. In view of the 
smallness of the strains and angles of rotation, we will omit the superscript 0 everywhere. 

By [13,14], the expressions for the stresses and displacements in the medium S,, using the 
notation (2.4), take the form 
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(4.1) 

(4.2) 

where 11: is the component of the displacement vector of points of the medium S, along the X, 
axis, K: = 1 + 2ai / c$’ for plane strain and K: = (5 /al;’ + 1 / 0:) /(3 I ai - 1 / 0:) for the plane stressed 
state, j, k = 1, 2. 

Conditions (2.6)-(2.8) in this case can be written in the form 

respectively. 
It follows from (4.1) and (4.3) that 

~~,(t)+~*(t)l+-[~,(t)+~Z(t)]- =a;-o;, (EL 

This means that 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

where 

a; -a;++($ =u;-a;+05 (4.8) 

By (4.1) and (4.8) we have 

(4.10) 

It is appropriate to note here that the solution of the problem in the linear formulation 
requires continuity of the stresses CT,, and CJ, on the section where the two media are in 
contact, including at infinity, whereas in the non-linear problem the nominal stresses o”, and 
oe are discontinuous when o; z o; (it is sufficient to compare (3.13) and (4.9)). 

When Eqs (4.7) are taken into account, we convert conditions (4.4) and (4.5) respectively to 
the boundary conditions for the single function al(<) 

@:w+q@;(t)=M, <EL, (4.11) 

(4.12) 
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M= 
l/a; 

K;/a;+I/ay 
[#;(n: +&+a; +a,-] 

For the function F(c),, defined by (3.6) (with p replaced by 9). from (4.11) and (4.12) we also 
obtain a non-homogeneous Hilbert boundary-value problem, the solution of which has the 
form 

F(r) ‘_ (ai+ - a; - Ql)elcEe 
2 ch(q_) 

[l-5] (4.13) 

Further, from (3.6) and (4.7) we have 

Q,(C)= 1 
[ 

B 

2ch(q) ’ 
+GzQYe ki2% 

Y(C) I 
++o; (4.14) 

6= 
~ 

1, SE& 
-1, fE& 

yc =rc&,(3-2k), k=1,2 

Letting x, -_)m in (4.11) and separating the real and imaginary parts, using (4.9) and (4.10) 
we obtain relations similar to (3.14) in the non-linear problem 

o:;m 
I+1 

-2- Ku+lo; =jl 
( 
oIr-2 

+ KP-lo; 3+p-(3f.r+I)e2XE’ _ 
(322 (4.15) 

2 KY+1 ) 2Ch(lc&,)P’ 

W_ol-oy W’;“-W, ---a; 
ara; 

(4.16) 

From (4.14)-(4.16) we obtain the stresses for which the crack does not open 

In this degenerate case Cp, have the following constant values 

OF; = cr*2 - - -0 

e= 
Icy-1 

-2- 
lC;+1 

0; =u 
Ku-t 

c$-2--- 
KY+1 

o; 

(4.17) 

(4.18) 
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Note that when o; = 0 (k = 1, 2) relations (4.14)-(4.18) are identical with the corresponding 
expressions obtained in [6]. 

Suppose that a preliminary uniform tension ai; = a; = a;, on = 0 acts in S, at infinity. We 
then obtain from (4.15) 

(4.19) 

whence it follows that, as in the non-linear problem, a preliminary uniform tension corres- 
ponding to zero strain can occur far from the crack simultaneously both in S, and S, only 
when a; = a;, 

In the case when there is continuous contact between the media the stressed state in each 
medium is identical with the corresponding stressed state at infinity, while the function 0k is 
such that 

The displacements of the points of each medium can be found from (4.2) using (4.14) 

ay(u[ +iu,k)= 
1 

2W=,) 1 +B&<+<)- 
(4.21) 

<+i2E B,+i&+- 
UC) Ii +c$<, (ES, 

Hence we obtain expressions for the displacements of points of crack surface when c=xl, 
Ix1 I<1 

4 Ku: t.q ) + i4 (x1 )I = ‘; +’ 
2 ch(=,) 

+o;x,, k = 1,2 (4.22) 

In the neighbourhood of the right tip of the crack when c+ 1 we have from (4.1) and (4.14) 
the following asymptotic forms of the linear problem 

0;(5)--~6K’(l+i2E.)g,c’lo’2 

& =eXp[th&,(3-2k)+&,(p], k=1,2 
(4-W 

K, = K,, - iK2r = 21/%..-~’ :iry(c - 1)x+ke@k(5) = 
(1 - i2E,)&iE~‘n2 

(G - iG ) 
+ Mm,) 

Then, we obtain the following expressions for the complex components of the stress tensor 

x: --g, Re{K,r-aee-*‘2) 

x1 - $=&&--'kh? -“2-~~[l+i(l-i2&,)sin~~]gkr e kc *‘2), cc& (4.24) 
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From (4.24) it is fairly easy to obtain relations for the components of the stresses in a polar 
system of coordinates. When al, = 0 (k = 1, 2) these relations are identical with the well-known 
asymptotic forms of the linear problem [15], since in this case the constants h”, and u,“, in terms 
of which oz and ol;‘, are expressed, are identical with the corresponding Lame parameters hck) 

and CL(,). The same can be said of the Rice-Cherepanov integral of the linear problem, for 
which, for an arbitrary value of oi, the following expression holds 

It should be noted, however, that the dependence of the asymptotic forms (4.24) on the 
parameters o; is related to the particular feature of the interface crack itself. For a crack in a 
uniform medium (E, = 0) relations (4.24) are independent of the value of the residual stress cr’ 
(o’ = a; = cr;). The asymptotic forms of the non-linear problem obviously possess the same 
property. Although expressions (3.27) were obtained for specific values of o;, their depen- 
dence on the elastic constants does not differ from the similar dependence of the asymptotic 
forms of the linear problem (4.24). 

Note also that for any values of o; the strains and angles of rotation are small in the region 
where the stress-strain state differs only slightly from the initial state, i.e. it corresponds to a 
configuration close to the reference configuration. This state is reached, for example, far from 
the crack when ol, =o’, OF- =cr’, oyi” = o; = 0 (k, j=l, 2). Here, since the surfaces of the 
crack are free from external loads, the stress-strain state in the neighbourhood of the middle of 
the crack will differ only slightly from the initial state if o’/oi*l (k=l, 2). Otherwise 
(particularly when o; = ol= a;) the crack as a whole will be situated in a region of large strains 
and an analysis of the behaviour of the crack is only possible by solving the corresponding 
non-linear problem. 

5. CONCLUSIONS 

The solution of the problem in its non-linear form revealed certain advantages of the 
nominal stresses over the stresses of the linear problem, and also over the actual stresses. This 
is discussed in detail in [13, 161. 

The nominal stresses do not oscillate as one approaches the tip of the crack, which enables 
one to justify physically their use in the force criterion of fracture. At the same time, the use of 
the actual stresses to predict fracture is problematical in view of their limited nature and 
oscillatory form close to the tip of the crack. 

An important feature of an interface crack is the fact that the stress-intensity factors K, (K,,) 
for them do not have any physical meaning, since they depend both on the normal and on the 
tangential forces. The nominal stresses have a clear advantage in this respect over the stresses 
of the linear problem, since the asymptotic formulae for the first (unlike the asymptotic forms 
of the linear problem) contain the same general load parameter IKI as the integral J. Hence, for 
the conventional stresses it obviously follows that the force and energy criteria of fracture are 
equivalent not only for any one type of fracture, but also for the mixed type of fracture (normal 
cleavage and shear simultaneously). 

The conventional stresses and the stresses of the linear problem have different asymptotic 
dependences on the polar angle. This raises doubts about the results obtained by analysing the 
asymptotic relationships of the linear problems if the dimensions of the regions of high elastic 
deformation around the tip of the crack exceed the limits allowed by linear fracture mechanics. 

A characteristic feature of the solutions of the non-linear and linear problems is the 
oscillations of the displacements as one approaches the tip of the crack. and, as a consequence 
of this, the interpenetration of the surfaces of the crack. In general, the parameters of the 
oscillation E and E, differ, but for plane strain and when the shear moduli of both media are the 
same (a, = clz), they are equal. In the latter case some results obtained for the linear problem 
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can easily be transferred to the non-linear problem. In particular, for pure stretching, con- 
sideration of the contact between the crack surfaces in the linear problem does not lead to any 
appreciable corrections, while the dimensions of the contact zone are practically identical with 
the small dimensions where, according to the solutions of the problems, the surfaces of the 
crack penetrate into one another [ll]. At the same time, when shear stresses 0; act on the 
material the contact zone in the linear problem may be large, and the solution with oscillations 
is inadmissible [ll, 121. Nevertheless, as follows from [17, 181, the ideas of linear fracture 
mechanics can nevertheless also be used in the case of a stress 07. Here the zone of penetra- 
tion of the surfaces of the crack must have dimensions of r, co.01 [17], which, for the most 
widely used composites with oscillation parameters IE, 1~0.15 [18], leads to the inequality 
I o; I c 0, 840;;. A similar result would be expected for the non-linear problem also. At least it 
is obvious when E = E,. 

When the region of oscillation has considerable dimensions it is necessary to consider the 
corresponding non-linear problem taking contact between the crack surfaces into account. 
When there are no limitations on the value of the elastic strain its solutions will be free from 
the contradictions which characterize the similar solution to the linear problem. 

I wish to thank K. F. Chernykh for proposing this research and for useful advice. 
The research described here was carried out with financial support from the Russian Fund 

for Fundamental Research (93-013-16511). 
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